

Analysis of Risk Factors for Postoperative Mortality in Acute Type A Aortic Dissection Patients Under Different Critical Levels

Zhu Xiyu MD PhD 2023-11-17

Aortic Disease Center of Jiangsu Province

Nanjing Cardiovascular Diseases Center

Department of Cardiovascular Surgery The Affiliated Drum Tower Hospital of Nanjing University Medical School

Acute Aortic Dissection

Aortic dissection, especially acute type A aortic dissection (aTAAD), is the most lethal cardiovascular disease.

Incidence

- In hospital patients incidence: 3-5/100 thousands per year
- Pre-hospital death included: 15/100 thousands per year
- People over 64 yrs old: 35/100 thousands per year

Figure 3 | **Incidence of aortic dissection.** Age-specific and sex-specific rates per 100,000 individuals for incidence of acute aortic dissection by subtype (2002–2012). Data from REF. 17.

Aortic Dissection. Nature Reviews Disease Primers 2. 2016.

ATCSA2023

Background

ATCSA202

Perioperative mortality

It is necessary to build up a scoring system to make the critical classification as soon as possible after admission.

Background

ATCSA2023

smes

Researcher	Year	Count	Variables	AUROC	Mortality
Tan et al.	2001	252	preoperative CPR, iatrogenic AD, preoperative pericardial drainage	NA	0.56 (0.49-0.63)
Spirito et al.	2001	108	preoperative MI, preoperative RF, shock, over 70 yrs old	NA	0.70 (0.63-0.76)
Mehta et al.	2002	547	advanced age, female, acute chest pain, abnormal ECG, pulseless, renal failure, cardiac tamponade	0.74	0.69 (0.62-0.75)
Santini et al.	2007	311	advanced age, cardiac tamponade, hypotension, AMI, intestinal ischemia, acute renal failure, CNS injury	0.77	0.74 (0.67-0.80)
Leontyev et al.	2016	534	preoperative critical status, malperfusion of myocardia and intestinal, CAD	0.77	0.74 (0.68-0.80)
Mejare-Berggren et al.	2017	509	preoperative critical status, CAD	0.66	0.73 (0.67-0.79)
Ghoreishi et al.	2018	269	increased lactate and creatinine, liver failure	0.75	0.77 (0.71-0.83)

Background

The limited sample size

The variables are heterogeneous

Organ perfusion status is not taken into consideration in most studies

Different surgical techniques have been reported alternative and effective to patients under stable condition. Whether these techniques are also suitable for critically ill patients?

Risk factors of mortality in different preoperative status patients

Method

- ✓ Clinical data of 1380 aTAAD patients were collected since 2010 to 2020;
- ✓ Data of 1364 aTAAD patients were used for further analysis;
- ✓ All patients were divided into the ratio of 7:3 in training group and testing group;
- A scoring system was built up for risk stratification;
- Risk factors for postoperative mortality were analyzed in low- and high-risk patients separately.

Surgical treatments in our center

Root procedure

Double jacket wrapping technique based on the root reconstruction procedure

Surgical treatments in our center

As only or As+Hemi-arch Total arch+FET

Modified "in situ" total arch +FET

Fenestrated stent

Arch procedure

ATCSA2023 Is Cal fina city. Vistaan Xue YX et al. J Thorac Dis. 2021 Zhou Q et al. Interact Cardiovasc Thorac Surg. 2018 Sun LZ et al. Ann Cardiothorac Surg. 2013

Result one: Risk factor for postoperative mortality in aTAAD patients (all data set)

Variables	Odd ratio (95% CI)	P value
Preoperative variables		
Advanced age	1.015 (1.003-1.027)	0.014
Preoperative hypotension	2.264 (1.328-3.858)	0.003
Cardiac tamponade	2.303 (1.583-3.352)	<0.001
Preoperative lower limbs malperfusion	2.325 (1.607-3.365)	<0.001
Preoperative coronary malperfusion	2.688 (1.518-4.759)	0.001
Coronary artery involvement	1.703 (1.203-2.410)	0.003
Salvage operation	2.576 (1.719-3.859)	<0.001
Intraoperative variables		
Operation time	1.417 (1.313–1.528)	<0.001
Cardiopulmonary bypass time	1.006 (1.004-1.008)	<0.001
Aortic cross–clamping time	1.006 (1.004-1.009)	<0.001
Axillary artery intubation	0.629 (0.407-0.970)	0.038
Cerebral perfusion time	1.018 (1.003-1.032)	0.019
Lowest intraoperative temperature	0.910 (0.851-0.974)	0.007
Coronary artery bypass	3.903 (2.472-6.160)	<0.001
Postoperative variables		
Cerebral complications	2.328 (1.458-3.715)	0.001
Postoperative stroke	2.306 (1.336-3.983)	0.004
Prolonged mechanical ventilation time	1.003 (1.001-1.004)	0.004
Re-intubation	2.765 (1.688-4.528)	<0.001
CRRT establishment	2.676 (1.824-3.927)	<0.001
Surgical infection	3.676 (1.828-7.389)	0.001
Postoperative lower limbs malperfusion	2.992 (1.273-7.033)	0.016
Postoperative visceral malperfusion	4.962 (2.144–11.484)	<0.001
1 1 1 1 1 0.50 1.0 2.0 4.0 8.0 ATCSA2023 Is GLI Mind city, Vietam		

Result two: Model construction Α

0.023

Preoperative hypotension

Cardiac

Lower limbs nalperfusion

ronary artery malperfusion

Blood urea nitrogen

Cardiac

Lower limbs alperfusion

Blood urea

- Total score of specific aTAAD patient over 70 pts • will be considered as high risk.
- Salvage surgery will be performed for these ٠ high-risk patients.

Result three: Risk factors of postoperative mortality for different critical level patients

Low risk patients	All	Survival	Dead	P value
Operation time (hour)	7.8±1.9	7.7±1.7	9.3±2.4	<0.001
CPB time (min)	231.7±72.3	228.0±67.8	264.6±99.8	0.001
ACC time (min)	161.4±52.1	159.3±51.2	180.2±56.6	<0.001
Arterial intubation approach				
Ascending aorta	15 (1.6%)	13 (86.7%)	2 (13.3%)	_
Femoral artery	211 (22.9%)	193 (91.5%)	18 (8.5%)	0.610
Axillary artery	190 (20.7%)	173 (91.1%)	17 (8.9%)	0.010
Axillary-Femoral artery	504 (54.8%)	448 (88.9%)	56 (11.1%)	_
DHCA	907 (98.6%)	815 (98.5%)	92 (98.9%)	1.000
Cerebral perfusion (CP)	792 (86.1%)	708 (85.6%)	84 (90.3%)	
None	128 (13.9%)	119 (93.0%)	9 (7.0%)	_
Anterograde CP	744 (80.9%)	666 (89.5%)	78 (10.5%)	0.423
Retrograde CP	48 (5.2%)	42 (87.5%)	6 (12.5%)	
CP time (min)	29.7±10.9	29.5±11.0	32.1±10.0	0.043
Lowest temperature (°C)	21.0±2.4	21.0±2.4	20.5±2.4	0.058
Root treatment				
Untreated	9 (1.0%)	8 (88.9%)	1 (11.1%)	_
Root repair	699 (76.0%)	631 (90.3%)	68 (9.7%)	0.693
Root replacement	212 (23.0%)	189 (89.2%)	23 (10.8%)	
Arch treatment				
Untreated	0 (0.0%)	0 (0.0%)	0 (0.0%)	_
Hemi-arch replacement	166 (18.0%)	151 (91.0%)	15 (9.0%)	_
Island replacement	108 (11.7%)	96 (88.9%)	12 (11.1%)	0 757
Total arch replacement	335 (36.4%)	296 (88.4%)	39 (11.6%)	0.757
Branch stent implantation	32 (3.5%)	29 (90.6%)	3 (9.4%)	_
F-stent implantation	279 (30.3%)	255 (91.4%)	24 (8.6%)	_
CABG	54 (5.9%)	39 (4.7%)	15 (16.1%)	<0.001
Planned CABG	37 (68.5%)	32 (86.5%)	5 (13.5%)	- 0.001
Unplanned CABG	17 (31.5%)	7 (41.2%)	10 (58.8%)	
MV replacement	6 (0.7%)	4 (0.5%)	2 (2.2%)	0.116
MV repair	15 (1.6%)	12 (1.5%)	3 (3.2%)	0.187
TV repair	18 (2.0%)	15 (1.8%)	3 (3.2%)	0.415
AFRA	5 (0.5%)	4 (0.5%)	1 (1.1%)	0.414

ATCSA202

ligh risk patients	All	Survival	Dead	P value
Operation time (hour)	7.9±2.2	7.6±2.0	9.0±2.6	<0.001
CPB time (min)	240.5±80.6	230.0±66.9	278.5±109.7	0.001
AAC time (min)	168.6±59.6	164.4±53.8	183.9±75.4	0.045
Arterial intubation approach				
Ascending aorta	5 (1.1%)	3 (60.0%)	2 (40.0%)	
Femoral artery	118 (26.6%)	86 (72.9%)	32 (27.1%)	0.049
Axillary artery	86 (19.4%)	75 (87.2%)	11 (12.8%)	0.048
Axillary-Femoral artery	235 (52.9%)	183 (77.9%)	52 (22.1%)	-
DHCA	438 (98.6%)	341 (98.3%)	97 (100.0%)	0.347
Cerebral perfusion (CP)	354 (79.7%)	283 (81.6%)	71 (73.2%)	0.086
None	90 (20.3%)	64 (71.1%)	26 (28.9%)	
Anterograde CP	334 (75.2%)	268 (80.2%)	66 (19.8%)	0.166
Retrograde CP	20 (4.5%)	15 (75.0%)	5 (25.0%)	
CP time (min)	30.2±11.3	29.9±11.1	31.4±12.0	0.281
Lowest temperature (°C)	21.5 (20.0, 23.0)	22.0 (20.0, 24.0)	20.0 (18.0, 22.0)	0.007
Root treatment				
Untreated	5 (1.1%)	4 (80.0%)	1 (20.0%)	_
Root repair	335 (75.5%)	257 (76.7%)	78 (23.3%)	0.377
Root replacement	104 (23.4%)	86 (82.7%)	18 (17.3%)	
Arch treatment				
Untreated	5 (1.1%)	5 (1.4%)	0 (0.0%)	_
Hemi-arch replacement	107 (24.1%)	83 (77.6%)	24 (22.4%)	_
Island replacement	52 (11.7%)	43 (82.7%)	9 (17.3%)	- <0.001
Total arch replacement	127 (28.6%)	97 (76.4%)	30 (23.6%)	<0.001
Branch stent implantation	8 (1.8%)	6 (75.0%)	2 (25.0%)	
F-stent implantation	145 (32.7%)	113 (77.9%)	32 (22.1%)	
CABG	39 (8.9%)	21 (6.1%)	18 (18.6%)	<0.001
Planned CABG	28 (71.8%)	18 (64.3%)	10 (35.7%)	0.072
Unplanned CABG	11 (28.2%)	3 (27.3%)	8 (72.7%)	0.072
MV replacement	1 (0.2%)	1 (0.3%)	0 (0.0%)	1.000
MV repair	3 (0.7%)	2 (0.6%)	1 (1.0%)	0.524
TV repair	4 (0.9%)	4 (1.2%)	0 (0.0%)	0.581
AFRA	0 (0.0%)	0 (0.0%)	0 (0.0%)	-

Result four: Univariate analysis of postoperative mortality in low- and high-risk patients

		Low-risk patients				High-risk	patients	
Variables	Odd ratio	95% Confide	ence Interval	P Value	Odd ratio	95% Confide	ence Interval	P Value
		Lower	Upper			Lower	Upper	
Intraoperative variables								
Operation time	1.512	1.353	1.689	<0.001	1.322	1.192	1.467	<0.001
CPB time	1.005	1.003	1.008	<0.001	1.007	1.004	1.010	<0.001
ACC time	1.007	1.003	1.011	<0.001	1.005	1.002	1.009	0.005
Axillary artery cannulation	-	-	-	-	0.464	0.236	0.914	0.029
Lowest hypothermia temperature	-	-	-	-	1.122	1.021	1.233	0.016
CABG	3.116	2.026	4.792	<0.001	3.537	1.799	6.953	<0.001
Postoperative variables								
Cerebral complications	2.041	1.024	4.070	0.048	2.341	1.204	4.551	0.013
Mechanical ventilation time	-	-	-	-	1.005	1.002	1.008	0.003
Re-intubation	3.080	1.619	5.857	0.001	2.646	1.185	5.910	0.019
CRRT establishment	3.704	2.192	6.257	<0.001				
Surgical infection	3.878	1.564	9.614	0.007	3.747	1.181	11.894	0.028
Postoperative lower limbs malperfusion	-	-	-	-	3.809	1.391	10.431	0.011
Postoperative visceral malperfusion	-	-	-	-	5.109	1.728	15.102	0.004

Discussion——artery cannulation

2021 The American Association for Thoracic Surgery expert consensus document: Surgical treatment of acute type A aortic dissection

- Axillary artery cannulation is commonly performed in the Europe and the North America and can decrease the postoperative mortality in aTAAD patients.
- Femoral artery cannulation is more efficient approach to establish CPB and has been widely used around the world, however, the retrograde blood flow would increase the incidence of stroke and intraoperative organ malperfusion.

Variables	Axillary artery N=86	Femoral artery N=118	Axillary-Femoral artery N=235	P1 value	P2 value
Cerebral complications	6 (7.0%)	12 (10.2%)	24 (10.2%)	0.466	0.402
Postoperative stroke	3 (3.5%)	7 (5.9%)	19 (8.1%)	0.524	0.212
Postoperative hemiplegia	2 (2.3%)	5 (4.2%)	4 (1.7%)	0.701	0.661
CRRT establishment	8 (9.3%)	20 (16.9%)	43 (18.3%)	0.150	0.058
Postoperative lower limbs malperfusion	1 (1.2%)	5 (4.2%)	10 (4.3%)	0.404	0.300
Postoperative visceral malperfusion	1 (1.2%)	2 (1.7%)	11 (4.7%)	1.000	0.193
Postoperative gastrointestinal bleeding	2 (2.3%)	3 (2.5%)	2 (0.9%)	1.000	0.292

De Paulis, R et al. EJCTS 2015 Lee TC et al. Journal of cardiac surgery 2018 Helder K et al. The Annals of thoracic surgery 2019

Discussion——arch treatments

High risk patients Usage ratio from 36.4% to 28.6% Mortality rate 11.6% to 23.6%

- Avoiding supra-arch vessels isolation and anastomosis could decrease operation time, CPB time, AAC time, DHCA time and intraoperative bleeding compared to TAR surgery.
- Combined using of the FET would be helpful of early aortic remodeling.

Arch treatment	All	Survival	Dead	
Untreated	5 (1.1%)	5 (1.4%)	0 (0.0%)	
Hemi-arch replacement	107 (24.1%)	83 (77.6%)	24 (22.4%)	
Island replacement	52 (11.7%)	43 (82.7%)	9 (17.3%)	<0.00
Total arch replacement	127 (28.6%)	97 (76.4%)	30 (23.6%)	1
Branch stent implantation	8 (1.8%)	6 (75.0%)	2 (25.0%)	_
F-stent implantation	145 (32.7%)	113 (77.9%)	32 (22.1%)	
V V				V

Limitations

- This is a retrospective and single center cohort study with limited sample size
- After incorporating more clinical variables, the predictive model will have higher sensitivity and specificity
- External validation from other centers is needed
- Further researches are important to evaluate the influences of different surgical procedures and cannulation approaches on specific patients

Summary

- For low-risk patients, there are no difference among different root procedures or arch procedures. Combined CABG procedure could increase the postoperative mortality.
- For high-risk patients, the extended arch procedure, femoral artery cannulation and combined CABG procedure would increase the postoperative mortality.
- Increased operation time, CPB time and ACC time are risk factors in all patients.

Thanks for your attention

Aortic Disease Center of Jiangsu Province Nanjing Cardiovascular Diseases Center Department of Cardiovascular Surgery The Affiliated Drum Tower Hospital of Nanjing University Medical School